THEONELLADINS A ~ D, NOVEL ANTINEOPLASTIC PYRIDINE ALKALOIDS FROM THE OKINAWAN MARINE SPONGE <u>THEONELLA SWINHOEL</u>

Jun'ichi Kobayashi*, Tetsuya Murayama, and Yasushi Ohizumi

Mitsubishi Kasei Institute of Life Sciences, Minamiooya, Machida, Tokyo 194, Japan Takuma Sasaki

Cancer Research Institute, Kanazawa University, Kanazawa 920, Japan Tomihisa Ohta and Shigeo Nozoe Pharmaceutical Institute, Tohoku University, Sendai 980, Japan

SUMMARY: Novel pyridine alkaloids, theonelladins A \sim D, with potent antileukemic activity have been isolated from the Okinawan marine sponge <u>Theonella</u> <u>swinhoei</u> and the structures elucidated on the basis of spectroscopic data.

Several pyridine-derived alkaloids including navenones¹, pulo'upone², anabaseine³, halitoxins⁴ and niphatynes⁵ have been isolated from marine organisms such as molluscs, a nemertean and sponges. During our survey of bioactive metabolites from Okinawan marine organisms⁶, methanol extracts of a sponge were found to exhibit potent antileukemic activity. In this communication, we describe the isolation and the structure elucidation of novel pyridine alkaloids, named theonelladins A ~ D (1 ~ 4), with potent antineoplastic activity from the Okinawan marine sponge Theonella <u>swinhoei</u>.

The sponge collected at Unten Bay $(-70 \sim -80 \text{ m})$, Motobu Peninsula, Okinawa, was kept frozen until used. The methanol extract was partitioned between ethyl acetate and water. The ethyl acetate-soluble material, showing antileukemic activity, was subjected repeatedly to silica gel column chromatographies (CHCl₃/MeOH, 80:20 and CHCl₃/n-BuOH/AcOH/H₂0, 15:60:10:10) followed by reversed phase HPLC (ODS, MeOH/H₂O/AcOH, 60:40:0.5) to give theonelladins A (1, 0.0028% wet weight), B (2, 0.0029%), C (3, 0.0035%) and D (4, 0.0015%).

The molecular formula $C_{21}H_{34}N_2$ of 2 was determined by HRFABMS (m/z 303.2766, M + H⁺, Δ -3.4 mmu). The presence of a 3-alkyl substituted pyridine ring was suggested by UV maxima⁷ at 210 (ε 12300), 257 (3300), 263 (3600) and 269 (2700) nm in MeOH; ¹³C NMR⁸ (CDCl₃) signals at δ 150.3 (d, C-2), 147.5 (d, C-6), 139.6 (s, C-3), 138.5 (d, C-4) and 125.1 (d, C-5); ¹H NMR⁸ (MeOH-d₄) signals for four aromatic protons at δ 8.36 (brs, H-2), 8.34 (d, J = 5.0 Hz, H-6), 7.69 (d, J = 7.9 Hz, H-4) and 7.34 (q, J = 5.0 and 7.9 Hz, H-5); and an EIMS⁹ fragment ion at m/z 210 (M⁺ - C₆H₆N). The five degrees of unsaturation were account for by the pyridine ring and

a disubstituted olefin at δ 128.9 (d, C-9) and 132.4 (d, C-10). The configuration of the double bond was assigned as Z by the coupling (11 Hz) between H-9 and H-10 (both δ 5.38) obtained by the J-resolution experiment. The CH₂NHCH₃ terminus was detected by characteristic NMR signals for C-20/H-20 (δ 52.2, t/ δ 2.60, brt) and C-22/H-22 (δ 35.5, q/ δ 2.41, s), and by an EIMS fragment ion at m/z 272 (M⁺ - CH₄N). The partial structure CH₂CH₂CH=CHCH₂CH₂ (C-7 ~ C-11) was deduced from cross peaks for H₂-7 (δ 2.71, t)/H₂-8 (δ 2.38, q), H₂-8/H-9, and H-10/H-11 (δ 1.90, m) in ¹H-¹H COSY spectrum. One end (C-7, δ 33.8) of the alkyl chain was attached to the pyridine ring, since the HMBC¹⁰ spectrum revealed cross peaks for H-7 to C-2, C-3 and C-4. The ten methylenes between the olefin and NHCH₃ were evident from the EIMS fragments (M-CH₄N - n x CH₂; n = 1~10). Thus the structure of theonelladin B was assigned to be 2.

Theonelladin A (1) was shown to have the molecular formula $C_{20}H_{32}N_2$ (HRFABMS, m/z 289.2575, M⁺ + H, Δ -6.9 mmu). The ¹H and ¹³C NMR¹¹ spectra were very similar to those of **2**. However, the decrease in the molecular weight by 14 (CH₂) and the loss of a methyl signal resonance (δ 2.41/ δ 35.5) indicated that **1** is the N-demethyl form of **2**. The CH₂NH₂ terminus was also supported by the EIMS fragment ion at m/z 272 (M⁺ - NH₂) and the CH₂ chemical shifts (δ_C 41.0, t/ δ_H 2.83, t).

Theonelladins C (3) and D (4)¹² were the saturated analogs of 1 and 2 with loss of a methylene unit, respectively. The HRFABMS spectra of 3 and 4 afforded the molecular formulae $C_{18}H_{32}N_2$ (m/z 277.2633, M + H⁺, Δ -1.1 mmu) and $C_{19}H_{34}N_2$ (m/z

291.2810, M + H⁺, Λ +1.0 mmu), respectively. In each ¹H NMR spectrum of **3** and **4** no olefin proton signal at δ 5.0 ~ 5.5 was observed but a multiplet signal newly appeared at δ 1.59 (H-8) as compared with those of **1** and **2**. The only difference between **3** and **4** was the presence of a singlet at δ 2.42 (NCH₃) in **4**. The saturated alkyl side-chain with a NH₂ or a NHCH₃ terminus was also evident from the EIMS^{13,14} fragmentation patterns in **3** or **4**.

Pyridine-derived compounds from marine origins are very few¹⁵ and theonelladins $A \sim D$ (1 ~ 4) are the first pyridine alkaloids from the sponge of the <u>Theonella</u> genus. The origin of the pyridine ring might be resolved by more examples of pyridine alkaloids from marine sources¹⁶. Theonelladins $A \sim D$ (1 ~ 4) exhibited potent antineoplastic activity¹⁷ against murine lymphomas L1210 (IC₅₀ = 4.7 (1), 1.0 (2), 3.6 (3), and 1.6 (4) µg/ml) cells and human epidermoid carcinoma KB (IC₅₀ = 10 (1), 3.6 (2), 10 (3), and 5.2 (4) µg/ml) cells in vitro. These compounds all also showed powerful Ca²⁺-releasing activity from sarcoplasmic reticulum¹⁸, being twenty times more potent than caffeine, a well-known Ca²⁺ inducer.

Acknowledgments: We thank Dr. P. Bergquist (Department of Zoology, The University of Auckland) for identification of the sponge, Mr. Z. Nagahama for his assistance of collecting the sponge, and Ms. M. Takamatsu and Ms. M. Hamashima for their technical assistance. This study was supported in part by Grant-in-Aid (63010043) for Cancer Research from Ministry of Education, Science, and Culture, Japan.

References and Notes

- 1. H. L. Sleeper and W. Fenical, J. Am. Chem. Soc., 99, 2367 (1977).
- 2. S. J. Coval and P. J. Scheuer, <u>J. Org. Chem.</u>, <u>50</u>, 3025 (1985).
- 3. W. R. Kem, B. C. Abbot, and R. M. Coates, <u>Toxicon</u>, <u>9</u>, 15 (1971).
- F. J. Schmitz, K. H. Hollenbeak, and D. C. Campbell, <u>J. Org. Chem.</u>, <u>43</u>, 3916 (1978).
- 5. E. Quinõà and P. Crews, <u>Tetrahedron</u> <u>Lett.</u>, <u>28</u>, 2467 (1987).
- (a) J. Kobayashi, J.-F. Cheng, H. Nakamura, Y. Ohizumi, Y. Hirata, T. Sasaki, T. Ohta, and S. Nozoe, <u>Tetrahedron Lett.</u>, <u>29</u>, 1177 (1988); (b) J. Kobayashi, J.-F. Cheng, M. R. Walchli, H. Nakamura, Y. Hirata, T. Sasaki, and Y. Ohizumi, <u>J. Org. Chem.</u>, <u>53</u>, 1800 (1988); (c) J. Kobayashi, J.-F. Cheng, T. Ohta, H. Nakamura, S. Nozoe, Y. Hirata, Y. Ohizumi, and T. Sasaki, <u>J. Org. Chem.</u>, <u>53</u>, 6147 (1988); (d) J. Kobayashi, M. Ishibashi, M. R. Wälchli, H. Nakamura, Y. Hirata, T. Sasaki, and Y. Ohizumi, <u>J. Am. Chem. Soc.</u>, <u>110</u>, 490 (1988); (e) J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Hirata, and Y. Ohizumi, <u>J. Chem. Soc.</u> <u>Perkin Trans.</u> <u>1</u>, 101 (1989).
- 7. A. I. Scott, In "Interpretation of the Ultraviolet Spectra of Natural

Products": Pergamon Press: New York, 1964, p.179.

- 8. 2: NMR signals were assigned from COSY, DEPT, HMQC¹⁹ and HMBC data, ¹³C NMR (CDCl₃) δ 150.3 (d, C-2), 139.6 (s, C-3), 138.5 (d, C-4), 125.1 (d, C-5), 147.5 (d, C-6), 33.8 (t, C-7), 29.8 (t, C-8), 128.9 (d, C-9), 132.4 (d, C-10), 28.2 (t, C-11), 30.3 (t, C-12), 29.8 ~ 30.6 (t, 5C, C-13 ~ C-17), 28.1 (t, C-18), 29.6 (t, C-19), 52.2 (t, C-20), and 35.5 (q, C-22); ¹H NMR (CD₃OD) δ 8.36 (brs, H-2), 7.69 (d, J = 7.9 Hz, H-4), 7.34 (q, J = 5.0 and 7.9 Hz, H-5), 8.34 (d, J = 5.0 Hz, H-6), 2.71 (t, J = 7.4 Hz, H-7), 2.38 (q, J = 7.4 and 13.6 Hz, H-8), 5.38 (m, 2H, H-9 and H-10), 1.90 (brt, H-11), 1.20 (m, H-12), 1.17 ~ 1.37 (m, 1H, H-13 ~ H-17), 1.33 (m, H-18), 1.52 (m, H-19), 2.60 (t, J = 7.4 Hz, H-20), and 2.41 (s, H-22).
- 9. EIMS of 2, m/z (%); 302 (M⁺, 33), 287 (56), 272 (17), 259 (58), 258 (18), 244 (18), 230 (18), 216 (23), 210 (78), 202 (10), 188 (7), 174 (10), 160 (11), 156 (12), 146 (28), 132 (22), 106 (42), 92 (48), and 93 (100).
- (a) A. Bax and M. F. Summers, <u>J. Am. Chem. Soc.</u>, <u>108</u>, 2093 (1986); (b) A. Bax,
 A. Aszalos, Z. Dinya, and K. Shudo, <u>J. Am. Chem. Soc.</u>, <u>108</u>, 8056 (1986).
- 11. 1: Spectral data were analogous to those of 2 excepting ¹³C NMR C-19 (t, δ 29.6) and C-20 (t, δ 52.2) and EIMS m/z (%) 288 (M⁺, 38).
- 12. Theonelladins C (3) and D (4) were contaminated with a trace of analogs with methyl branching alkyl chains which were not separated by HPLC under various conditions.
- 13. EIMS of 3: m/z (%) 276 (M⁺, 12), 260 (9), 247 (15), 246 (14), 232 (29), 218 (19), 204 (13), 190 (16), 176 (12), 162 (10), 148 (10), 134 (12), 120 (19), 106 (100), 93 (89) and 93 (42).
- 14. 4: Spectral data were analogous to those of 1 excepting 13 C NMR C-21 (s, δ 35.1) and EIMS m/z (%) 290 (M⁺, 15).
- C. Christophersen. In "The Alkaloids": Ed. by A. Brossi: Academic Press: New York, 1985, Vol.24, p.25.
- 16. M. J. Garson, Nat. Prod. Rep., 6, 143 (1989).
- J.-F. Cheng, Y. Ohizumi, M. R. Walchli, H. Nakamura, Y. Hirata, T. Sasaki, and J. Kobayashi, <u>J. Org. Chem.</u>, <u>53</u>, 4621 (1988).
- Y. Nakamura, J. Kobayashi, J. Gilmore, M. Mascal, K. L. Rinehart, Jr., H. Nakamura, and Y. Ohizumi, <u>J. Biol. Chem.</u>, <u>261</u>, 4139 (1986).
- 19. (a) L. Muller, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 4481 (1979); (b) A. Bax, R. H. Griffer, and B. L. Hawkins, <u>J. Am. Chem. Soc.</u>, <u>105</u>, 7188 (1983).

(Received in Japan 1 June 1989)